题目内容
【题目】已知抛物线和
(1)如何将抛物线平移得到抛物线?
(2)如图1,抛物线与轴正半轴交于点,直线经过点,交抛物线于另一点.请你在线段上取点,过点作直线轴交抛物线于点,连接
①若,求点的横坐标
②若,直接写出点的横坐标
(3)如图2,的顶点、在抛物线上,点在点右边,两条直线、与抛物线均有唯一公共点,、均与轴不平行.若的面积为2,设、两点的横坐标分别为、,求与的数量关系
【答案】(1)见解析;(2)①点的横坐标为.②.(3).
【解析】
(1)根据两个抛物线的顶点坐标即可确定平移方式;
(2)①如图1,设抛物线与轴交于点,直线与轴交于点,确定出点A、C、D的坐标,进而由,轴,可得,两点关于轴对称,设关于轴的对称点为,从而可得直线的解析式为,继而解方程组即可求得答案;
②如图2,,设P,Q,分别表示出PQ长,AP2,再根据AP=PQ,得到关于m的方程,解方程即可求得答案;
(3)如图3,分别求出直线NE、NE、MN的解析式,作轴交于点,表示出EF的长,继而根据三角形面积公式进行求解即可.
(1)抛物线的顶点坐标是(1,-4),
抛物线的顶点坐标是(0,0),
所以将先向左平移1个单位长度,再向上平移4个单位长度得到或将先向上平移4个单位长度,再向左平移1个单位长度得到;
(2)①如图1,设抛物线与轴交于点,直线与轴交于点,
,
当x=0时,y=-3,
当y=0时,x=-1或x=3,
∴,,
∵直线经过,∴,,
∵,轴,∴,两点关于轴对称,
设关于轴的对称点为,则,
∴直线的解析式为,
由,得,,,
∴,
∴,
∴点的横坐标为;
②如图2,,
设P,Q,
则有PQ=-=-m2+m+7,
又∵A(3,0),
∴AP2=(3-m)2+()2=,
∵AP=PQ,
∴(-m2+m+7)2=,
∴[(m-3)(3m+7)]2=,
∴(m-3)2(3m+7)2=25(m-3)2,
∵m≠3,
∴(3m+7)2=25,
∴m1=-,m2=-4(舍去),
∴m=-;
(3)如图3,
∵,∴,,
设直线的解析式为,
∵,∴,
由得,,
依题意有,,∴,
∴直线的解析式为,
同理,直线的解析式为,
由得,,
∵,,
∴直线的解析式为,
作轴交于点,则,
∴,
∴,
∴.
【题目】某学校初二和初三两个年级各有600名同学,为了科普卫生防疫知识,学校组织了一次在线知识竞赛,小宇分别从初二、初三两个年级随机抽取了40名同学的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
.初二、初三年级学生知识竞赛成绩不完整的频数分布直方图如下(数据分成5组:,,,,):
.初二年级学生知识竞赛成绩在这一组的数据如下:
80 80 81 83 83 84 84 85 86 87 88 89 89
.初二、初三学生知识竞赛成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
初二年级 | 80.8 | 96.9 | |
初三年级 | 80.6 | 86 | 153.3 |
根据以上信息,回答下列问题:
(1)补全上面的知识竞赛成绩频数分布直方图;
(2)写出表中的值;
(3)同学看到上述的信息后,说自己的成绩能在本年级排在前40%,同学看到同学的成绩后说:“很遗憾,你的成绩在我们年级进不了前50%”.请判断同学是________(填“初二”或“初三”)年级的学,你判断的理由是________.
(4)若成绩在85分及以上为优秀,请估计初二年级竞赛成绩优秀的人数为____.