题目内容
【题目】下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程: 已知:如图,直线 l 和直线 l 外一点 A
求作:直线 AP,使得 AP∥l
作法:如图
①在直线 l 上任取一点 B(AB 与 l 不垂直),以点 A 为圆心,AB 为半径作圆,与直线 l
交于点 C.
②连接 AC,AB,延长 BA 到点 D;
③作∠DAC的平分线AP.
所以直线AP就是所求作的直线,
根据小星同学设计的尺规作图过程,完成下面的证明证明:
∵AB=AC,
∴∠ABC=∠ACB_________(填推理的依据)
∵∠DAC 是△ABC 的外角,∴∠DAC=∠ABC+∠ACB
∴∠DAC=2∠ABC
∵AP 平分∠DAC,
∴∠DAC=2∠DAP
∴∠DAP=∠ABC
∴AP∥l_________(填推理的依据)
【答案】(等边对等角); (同位角相等,两直线平行).
【解析】
首先要根据角平分线的尺规作图即,再分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.
解:(1)如图所示,直线即为所求.
(2)证明:,
(等边对等角),
是的外角,
.
,
平分,
,
,
(同位角相等,两直线平行),
故答案为:(等边对等角);(同位角相等,两直线平行).
练习册系列答案
相关题目