题目内容
【题目】图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积:
方法1: 方法2:
(2)观察图②请你写出下列三个代数式:(m+n)2,(m﹣n)2,mn之间的等量关系. ;
(3)根据(2)题中的等量关系,解决:已知:a﹣b=5,ab=﹣6,求:(a+b)2的值;
【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.
【解析】
(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;
方法2:利用大正方形的面积减去四周四个矩形的面积列式;
(2)根据不同方法表示的阴影部分的面积相同解答;
(3)根据(2)的结论整体代入进行计算即可得解.
解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,
∴阴影部分的面积=(m-n)2
方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积
∴阴影部分的面积=(m+n)2-4mn;
(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;
(3)由(2)可知(a+b)2=(a-b)2+4ab,
∵a-b=5,ab=-6,
∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.
练习册系列答案
相关题目