题目内容

【题目】如图,在四边形ABCD中,ADBCABBC,点EAB上,DEC90°

1)求证:ADE∽△BEC

2)若AD1BC3AE2,求AB的长.

【答案】(1)详见解析;(2)BE=

【解析】

(1)首先得出∠A=∠B=90°,再根据已知得到∠ADE=∠CEB,利用两角对应相等的两个三角形相似即可得证;

(2)利用相似三角形的性质得出BE的长,进而得出答案即可

(1)∵AD∥BC,AB⊥BC,

∴AB⊥AD,∠A=∠B=90°,

∴∠ADE+∠AED=90°,

∵∠DEC=90°,

∴∠AED+∠BEC=90°,

∴∠ADE=∠BEC,

∴△ADE∽△BEC;

(2)∵△ADE∽△BEC,

∵AD=1,BC=3,AE=2,

∴BE=

∴AB=AE+BE=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网