题目内容
如图,AB、AC为⊙O的弦,连接CO、BO并延长分别交弦AB、AC于点E、F,∠B=∠C。问:线段CE和线段BF相等吗?请说明理由。
CE=BF
∵OB,OC是⊙O的半径,
∴OB=OC.
又∵∠B=∠C,∠BOE=∠COF,
∴△EOB≌△FOC(ASA).
∴OE=OF.
∵CE=OC+OE,BF=OB+OF,
∴CE=BF.
∴OB=OC.
又∵∠B=∠C,∠BOE=∠COF,
∴△EOB≌△FOC(ASA).
∴OE=OF.
∵CE=OC+OE,BF=OB+OF,
∴CE=BF.
练习册系列答案
相关题目