题目内容
【题目】如图所示,已知:DG⊥BC,AC⊥BC,FE⊥AB,∠1=∠2.
求证:CD⊥AB.
证明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直的定义)
∴DG∥AC( )
∴∠2=∠DCA( )
∵∠1=∠2(已知)
∴∠1= (等量代换)
∴ (同位角相等,两直线平行)
∴ =∠ADC( )
∵EF⊥AB(已知), ∴∠AEF=90°( ),∴∠ADC=90° ,
∴CD⊥AB(垂直的定义)
【答案】见解析.
【解析】
灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.
∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直的定义)
∴DG∥AC( 同位角相等,两直线平行 )
∴∠2=∠DCA( 两直线平行,内错角相等 )
∵∠1=∠2(已知)
∴∠1= ∠DCA (等量代换)
∴ EF∥DC (同位角相等,两直线平行)
∴∠AEF =∠ADC( 两直线平行,同位角相等 )
∵EF⊥AB(已知),
∴∠AEF=90°( 垂直的定义 ),
∴∠ADC=90° ,
∴CD⊥AB(垂直的定义).
【题目】下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.两数和的完全平方公式 |
D.两数差的完全平方公式 |
(2)该同学因式分解的结果是否彻底?________.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果_________ .
(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.