题目内容
【题目】已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.
(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.
(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.
【答案】(1)45°;(2)45°;(3)45°或135°.
【解析】
(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;
(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;
(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.
(1)如图,∠AOC=90°﹣∠BOC=20°,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=∠AOC=10°,∠COE=∠BOC=35°,
∴∠DOE=∠COD+∠COE=45°;
(2)∠DOE的大小不变,理由是:
∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;
(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,
分两种情况:如图3所示,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC,
∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;
如图4所示,∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=∠AOC,∠COE=∠BOC,
∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.