题目内容
【题目】随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.
(1)求:本次被调查的学生有多少名?补全条形统计图.
(2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少.
(3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
【答案】(1)本次被调查的学生有50人,补全图形见解析;(2)估计该校1200名学生中“非常了解”与“了解”的人数和是408人;(3)恰好抽到一男一女的概率为.
【解析】
(1)由“了解”的人数及其所占百分比求出总人数,总人数乘以对应的百分比可求出“非常了解”、“了解很少”的人数,继而求出“不了解”的人数,从而补全图形;
(2)利用样本估计总体思想求解可得;
(3)画树状图展示所有20种等可能的结果数,再找出符合条件的结果数,然后利用概率公式求解.
(1)本次被调查的学生有由12÷24%=50(人),
则“非常了解”的人数为50×10%=5(人),
“了解很少”的人数为50×36%=18(人),
“不了解”的人数为50﹣(5+12+18)=15(人),
补全图形如下:
(2)估计该校1200名学生中“非常了解”与“了解”的人数和是1200×=408(人);
(3)画树状图为:
共有20种等可能的结果数,其中恰好抽到一男一女的有12种结果,
所以恰好抽到一男一女的概率为=.
练习册系列答案
相关题目