题目内容
【题目】如图,矩形ABCD中,AB=6,BC=8,点F为BC边上的一个动点,把△ABF沿AF折叠.当点B的对应点B′落在矩形ABCD的对称轴上时,则BF的长为 .
【答案】 或
【解析】解:当B′在横对称轴上,此时AE=EB=3,如图1所示,
由折叠可得△ABF≌△AB′F,
∴∠AFB=∠AFB′,AB=AB′=6,BF=B′F,
∴∠B′MF=∠B′FM,
∴B′M=B′F,
∵EB′∥BF,且E为AB中点,
∴M为AF中点,即EM为中位线,∠B′MF=∠MFB,
∴EM= BF,
设BF=x,则有B′M=B′F=BF=x,EM= x,即EB′= x,
在Rt△AEB′中,根据勾股定理得:32+( x)2=62 ,
解得:x=2 ,即BF=2 ;
当B′在竖对称轴上时,此时AM=MD=BN=CN=4,如图2所示:
设BF=x,B′N=y,则有FN=4﹣x,
在Rt△FNB′中,根据勾股定理得:y2+(4﹣x)2=x2 ,
∵∠AB′F=90°,
∴∠AB′M+∠NB′F=90°,
∵∠B′FN+∠NB′F=90°,
∴∠B′FN=∠AB′M,
∵∠AMB′=∠B′NF=90°,
∴△AMB′∽△B′NF,
∴ ,即 ,
∴y= x,
∴( x)2+(4﹣x)2=x2 ,
解得x1=9+3 ,x2=9﹣3 ,
∵9+3 >4,舍去,
∴x=9﹣3
所以BF的长为 或 ,
所以答案是 或 .
【考点精析】关于本题考查的翻折变换(折叠问题),需要了解折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等才能得出正确答案.
练习册系列答案
相关题目