题目内容

【题目】如图,四边形ABCD是正方形,动点E、F分别从D、C两点同时出发,以相同的速度分别在边DC、CB上移动,当点E运动到点C时都停止运动,DFAE相交于点P,若AD=8,则点P运动的路径长为(  )

A. 8 B. 4 C. D.

【答案】D

【解析】

如图,连接AC、BD交于点O.首先证明∠DPE=∠APD=90°,即可推出点P的运动轨迹是以AD为直径的圆上的弧OD,由此即可解决问题.

解:如图,连接AC、BD交于点O.

∵DE=CF,AD=DC,∠ADE=∠DCF,
∴△ADE≌△DCF,
∴∠DAE=∠CDF,
∵∠DAE+∠AED=90°,
∴∠CDF+∠DEP=90°,
∴∠DPE=∠APD=90°,
∴点P的运动轨迹是以AD为直径的圆上的弧OD,
∴点P运动的路径长为 2π4=2π,
故选:D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网