ÌâÄ¿ÄÚÈÝ
Èçͼ£¬Å×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©ÓëxÖá½»ÓÚA£¨-3£¬0£©¡¢BÁ½µã£¬ÓëyÖáÏཻÓÚµãC£¨0£¬
£©£®µ±x=-4ºÍx=2ʱ£¬¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄº¯ÊýÖµyÏàµÈ£¬Á¬½ÓAC¡¢BC£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãM¡¢Nʱ´ÓBµã³ö·¢£¬¾ùÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËٶȷֱðÑØBA¡¢BC±ßÔ˶¯£¬ÆäÖÐÒ»¸öµãµ½´ïÖÕµãʱ£¬ÁíÒ»µãÒ²Ëæֹ֮ͣÔ˶¯£®µ±Ô˶¯Ê±¼äΪtÃëʱ£¬Á¬½ÓMN£¬½«¡÷BMNÑØMN·ÕÛ£¬BµãÇ¡ºÃÂäÔÚAC±ßÉϵÄP´¦£¬ÇótµÄÖµ¼°µãPµÄ×ø±ê£»
£¨3£©Å×ÎïÏ߶ԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃ¡÷ACFÊǵÈÑüÈý½ÇÐΣ¿Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£»Èô´æÔÚ£¬ÇëÇó³öFµã×ø±ê£®
3 |
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÈôµãM¡¢Nʱ´ÓBµã³ö·¢£¬¾ùÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËٶȷֱðÑØBA¡¢BC±ßÔ˶¯£¬ÆäÖÐÒ»¸öµãµ½´ïÖÕµãʱ£¬ÁíÒ»µãÒ²Ëæֹ֮ͣÔ˶¯£®µ±Ô˶¯Ê±¼äΪtÃëʱ£¬Á¬½ÓMN£¬½«¡÷BMNÑØMN·ÕÛ£¬BµãÇ¡ºÃÂäÔÚAC±ßÉϵÄP´¦£¬ÇótµÄÖµ¼°µãPµÄ×ø±ê£»
£¨3£©Å×ÎïÏ߶ԳÆÖáÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃ¡÷ACFÊǵÈÑüÈý½ÇÐΣ¿Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£»Èô´æÔÚ£¬ÇëÇó³öFµã×ø±ê£®
·ÖÎö£º£¨1£©¸ù¾Ýµ±x=-4ºÍx=2ʱ£¬¶þ´Îº¯Êýy=ax2+bx+c£¨a¡Ù0£©µÄº¯ÊýÖµyÏàµÈ£¬¿ÉÒÔÇóµÃº¯ÊýµÄ¶Ô³ÆÖᣬ¸ù¾ÝA¡¢B¶Ô³Æ£¬¼´¿ÉÇóµÃBµÄ×ø±ê£¬È»ºóÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇóµÃº¯ÊýµÄ½âÎöʽ£»
£¨2£©¸ù¾ÝM¡¢NµãµÄÔ˶¯ËÙ¶ÈÏàͬ£¬¿ÉÒԵõ½BM=BN£¬½ø¶ø¸ù¾Ý·ÕÛµÄÐÔÖÊÖ¤Ã÷£¬ËıßÐÎBMPNÊÇÁâÐΣ¬Ôò¡÷CPNÏàËÆÓÚ¡÷CAB£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÇóµÃOD£¬PDµÄ³¤¶È£¬Ôò¿ÉÒÔÇóµÃPµÄ×ø±ê£»
£¨3£©µãFÔÚ¶Ô³ÆÖáÉÏ£¬ÔòFµÄºá×ø±êÒ»¶¨ÊÇ-1£¬¡÷ACFÊǵÈÑüÈý½ÇÐΣ¬·ÖAF=AC£¬CF=CA£¬EA=ECÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£¬Ç°Á½ÖÖÇé¿öÀûÓÃt±íʾ³öAE£¬CEµÄ³¤¶È£¬¼´¿ÉµÃµ½¹ØÓÚtµÄ·½³Ì´Ó¶øÇó½â£»µÚÈýÖÖÇé¿öÇóµÃÖ±ÏßHFµÄ½âÎöʽ£¬ÔÙ¸ù¾ÝFµÄºá×ø±êÊÇ-1£¬¼´¿ÉÇó½â£®
£¨2£©¸ù¾ÝM¡¢NµãµÄÔ˶¯ËÙ¶ÈÏàͬ£¬¿ÉÒԵõ½BM=BN£¬½ø¶ø¸ù¾Ý·ÕÛµÄÐÔÖÊÖ¤Ã÷£¬ËıßÐÎBMPNÊÇÁâÐΣ¬Ôò¡÷CPNÏàËÆÓÚ¡÷CAB£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖÊ£¬ÇóµÃOD£¬PDµÄ³¤¶È£¬Ôò¿ÉÒÔÇóµÃPµÄ×ø±ê£»
£¨3£©µãFÔÚ¶Ô³ÆÖáÉÏ£¬ÔòFµÄºá×ø±êÒ»¶¨ÊÇ-1£¬¡÷ACFÊǵÈÑüÈý½ÇÐΣ¬·ÖAF=AC£¬CF=CA£¬EA=ECÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£¬Ç°Á½ÖÖÇé¿öÀûÓÃt±íʾ³öAE£¬CEµÄ³¤¶È£¬¼´¿ÉµÃµ½¹ØÓÚtµÄ·½³Ì´Ó¶øÇó½â£»µÚÈýÖÖÇé¿öÇóµÃÖ±ÏßHFµÄ½âÎöʽ£¬ÔÙ¸ù¾ÝFµÄºá×ø±êÊÇ-1£¬¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬¶Ô³ÆÖáΪx=
=-1£¬
ÓɶԳÆÐԿɵÃBµã×ø±êΪ£¨1£¬0£©
ÔòÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+3£©£¨x-1£©£¬
ÓÖ¹ýµã C£¨0£¬
£©£¬´úÈë¿É½âµÃa=-
Ôò½âÎöʽΪy=-
(x+3)(x-1)£¬
¼´y=-
x2-
x+
£¨2£©¡ßM¡¢NµãµÄÔ˶¯ËÙ¶ÈÏàͬ£¬¡àBM=BN=t£¬
ÓÖÓÉ·Õۿɵã¬NB=NP=t£¬MB=MP=t
¡àËıßÐÎBMPNÊÇÁâÐΣ¬¡àPNƽÐÐMN£¨¼´xÖᣩ
¡à¡÷CPNÏàËÆÓÚ¡÷CAB£®
¡à
=
Ò×µÃAB=4£¬BC=2
¡à
=
½âµÃt=
¡àNB=
£¬¡àCN=
¡à
=
=
£¬
´úÈë¿É½âµÃCD=
£¬DN=
¡àOD=
£¬PD=1
¡àP(-1£¬
)
£¨3£©ÔÚÖ±½Ç¡÷AOCÖУ¬AC=
=
=2
£®
ÉèFµã×ø±êΪ£¨1£¬a£©
¢Ùµ±AF=ACʱ£¬¡ßAC=2
£¬¡àAE=
=2
½âµÃ£ºa=¡À2
¡àF£¨-1£¬2
£©»ò£¨-1£¬-2
£©£»
¢Úµ±CF=CAʱ£¬¡àCE=
=2
½âµÃ£ºa=
¡À
£®
ÔòFµÄ×ø±êÊÇ£¨-1£¬
+
£©»ò£¨-1£¬
-
£©£»
¢Ûµ±EA=ECʱ£¬EµãΪAC´¹Ö±Æ½·ÖÏßÓë¶Ô³ÆÖáµÄ½»µã£¬ÖеãHµÄ×ø±êÊÇ£¨-
£¬
£©£®
ÉèÖ±ÏßACµÄ½âÎöʽÊÇ£ºy=kx+b£¬¸ù¾ÝÌâÒâµÃ£º
£¬½âµÃ£º
£¬
ÔòACµÄ½âÎöʽÊÇ£ºy=
x+
£®
¡ßFµãΪAC´¹Ö±Æ½·ÖÏßÓë¶Ô³ÆÖáµÄ½»µã£¬
¡àÖ±ÏßHFµÄÒ»´ÎÏîϵÊýÊÇ-
£®
ÉèHFµÄ½âÎöʽÊÇy=-
x+c£¬°ÑHµÄ×ø±ê´úÈëµÃ£º-
¡Á£¨-
£©+c=
£¬½âµÃ£ºc=-
£¬
ÔòHFµÄ½âÎöʽÊÇ£ºy=-
x-
£®
Áîx=-1£¬½âµÃy=0£¬
ÔòFµÄ×ø±êÊÇ£¨-1£¬0£©£®
×ÜÖ®£¬FµÄ×ø±êÊÇ£º£¨-1£¬2
£©»ò£¨-1£¬-2
£©»ò£¨-1£¬
+
£©»ò£¨-1£¬
-
£©»ò£¨-1£¬0£©£®
-4+2 |
2 |
ÓɶԳÆÐԿɵÃBµã×ø±êΪ£¨1£¬0£©
ÔòÉèÅ×ÎïÏߵĽâÎöʽΪy=a£¨x+3£©£¨x-1£©£¬
ÓÖ¹ýµã C£¨0£¬
3 |
| ||
3 |
Ôò½âÎöʽΪy=-
| ||
3 |
¼´y=-
| ||
3 |
2
| ||
3 |
3 |
£¨2£©¡ßM¡¢NµãµÄÔ˶¯ËÙ¶ÈÏàͬ£¬¡àBM=BN=t£¬
ÓÖÓÉ·Õۿɵã¬NB=NP=t£¬MB=MP=t
¡àËıßÐÎBMPNÊÇÁâÐΣ¬¡àPNƽÐÐMN£¨¼´xÖᣩ
¡à¡÷CPNÏàËÆÓÚ¡÷CAB£®
¡à
PN |
AB |
CN |
CB |
¡à
t |
4 |
2-t |
2 |
4 |
3 |
4 |
3 |
2 |
3 |
¡à
CN |
CB |
CD |
CO |
DN |
OB |
´úÈë¿É½âµÃCD=
| ||
3 |
1 |
3 |
¡àOD=
2
| ||
3 |
¡àP(-1£¬
2
| ||
3 |
£¨3£©ÔÚÖ±½Ç¡÷AOCÖУ¬AC=
OA2+OC2 |
9+3 |
3 |
ÉèFµã×ø±êΪ£¨1£¬a£©
¢Ùµ±AF=ACʱ£¬¡ßAC=2
3 |
(-1+3)2+a2 |
3 |
½âµÃ£ºa=¡À2
2 |
¡àF£¨-1£¬2
2 |
2 |
¢Úµ±CF=CAʱ£¬¡àCE=
12+(a-
|
3 |
½âµÃ£ºa=
3 |
11 |
ÔòFµÄ×ø±êÊÇ£¨-1£¬
3 |
11 |
3 |
11 |
¢Ûµ±EA=ECʱ£¬EµãΪAC´¹Ö±Æ½·ÖÏßÓë¶Ô³ÆÖáµÄ½»µã£¬ÖеãHµÄ×ø±êÊÇ£¨-
3 |
2 |
| ||
2 |
ÉèÖ±ÏßACµÄ½âÎöʽÊÇ£ºy=kx+b£¬¸ù¾ÝÌâÒâµÃ£º
|
|
ÔòACµÄ½âÎöʽÊÇ£ºy=
| ||
3 |
3 |
¡ßFµãΪAC´¹Ö±Æ½·ÖÏßÓë¶Ô³ÆÖáµÄ½»µã£¬
¡àÖ±ÏßHFµÄÒ»´ÎÏîϵÊýÊÇ-
3 |
ÉèHFµÄ½âÎöʽÊÇy=-
3 |
3 |
3 |
2 |
| ||
2 |
3 |
ÔòHFµÄ½âÎöʽÊÇ£ºy=-
3 |
3 |
Áîx=-1£¬½âµÃy=0£¬
ÔòFµÄ×ø±êÊÇ£¨-1£¬0£©£®
×ÜÖ®£¬FµÄ×ø±êÊÇ£º£¨-1£¬2
2 |
2 |
3 |
11 |
3 |
11 |
µãÆÀ£º±¾ÌâÊÇ¿¼²éÁ˶þ´Îº¯ÊýÓëÁâÐεÄÅж¨ÓëÐÔÖÊ£¬´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽµÄ×ÛºÏÓ¦Óã¬ÕýÈ·Ö¤Ã÷ËıßÐÎBMPNÊÇÁâÐÎÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿