题目内容
【题目】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )
A. 36 B. 12 C. 6 D. 3
【答案】D
【解析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.
解:设△OAC和△BAD的直角边长分别为a、b,
则点B的坐标为(a+b,a﹣b).
∵点B在反比例函数的第一象限图象上,
∴(a+b)×(a﹣b)=a2﹣b2=6.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.
故选D.
练习册系列答案
相关题目
【题目】小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体.下面是小亮测得的弹簧的长度y与所挂物体质量x的几组对应值.
所挂质量x/kg | 0 | 1 | 2 | 3 | 4 | 5 |
弹簧长度y/cm | 30 | 32 | 34 | 36 | 38 | 40 |
(1)上表所反映的变化过程中的两个变量,________是自变量,________是因变量;
(2)直接写y与x的关系式;
(3)当弹簧长度为130cm(在弹簧承受范围内)时,求所挂重物的质量.