题目内容
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是( )
①点D到∠BAC的两边距离相等;
②点D在AB的中垂线上;
③AD=2CD
④AB=2CD
A.1B.2C.3D.4
【答案】D
【解析】
根据角平分线的性质和含30°的直角三角形的性质解答即可.
由图可知:AD是∠BAC的平分线,
∴①点D到∠BAC的两边距离相等,正确;
∵△ABC中,∠C=90°,∠B=30°,
∴∠B=∠DAB=30°,
∴AD=DB,
∴②点D在AB的中垂线上,正确;
∵∠C=90°,∠B=30°,
∴∠DAC=30°,
∴③AD=2CD,正确;
∴AB=2AC,AC=CD,
∴④AB=2CD,正确;
故选D.
练习册系列答案
相关题目