题目内容
【题目】已知四边形ABCD是正方形,等腰直角△AEF的直角顶点E在直线BC上(不与点B,C重合),FM⊥AD,交射线AD于点M.
(1)当点E在边BC上,点M在边AD的延长线上时,如图①,求证:AB+BE=AM;
(提示:延长MF,交边BC的延长线于点H.)
(2)当点E在边CB的延长线上,点M在边AD上时,如图②;当点E在边BC的延长线上,点M在边AD上时,如图③.请分别写出线段AB,BE,AM之间的数量关系,不需要证明;
(3)在(1),(2)的条件下,若BE=,∠AFM=15°,则AM=.
【答案】
(1)
证明:如图①,延长MF,交边BC的延长线于点H,
∵四边形ABCD是正方形,FM⊥AD,
∴∠ABE=90°,∠EHF=90°,四边形ABHM为矩形,
∴AM=BH=BE+EH
∵△AEF为等腰直角三角形,
∴AE=AF,∠AEB+∠FEH=90°,
∵∠EFH+∠FEH=90°,
∴∠AEB=∠EFH,
在△ABE与△EHF中,
,
∴△ABE≌△EHF(AAS),
∴AB=EH,
∵AM=BH=BE+EH,
∴AM=BE+AB,即AB+BE=AM;
(2)
解:如图②,∵∠AEB+∠FEH=90°,∠AEB+∠EAB=90°,
∴∠FEH=∠EAB,
在△ABE与△EHF中,
,
∴△ABE≌△EHF(AAS),
∴AB=EH=EB+AM;
如图③∠BAE+∠AEB=90°,∠AEB+∠HEF=90°,
∴∠BAE=∠HEF,
在△ABE与△EHF中,
,
∴△ABE≌△EHF(AAS),
∴AB=EH,
∴BE=BH+EH=AM+AB;
(3)
解:如图①,∵∠AFM=15°,∠AFE=45°,
∴∠EFM=60°,
∴∠EFH=120°,
在△EFH中,
∵∠FHE=90°,∠EFH=120°,
∴此情况不存在;
如图②,∵∠AFM=15°,∠AFE=45°,
∴∠EFH=60°,
∵△ABE≌△EHF,
∴∠EAB=∠EFH=60°,
∵BE=,
∴AB=BEtan60°=×=3,
∵AB=EB+AM,
∴AM=AB﹣EB=3﹣;
如图③,∵∠AFM=15°,∠AFE=45°,
∴∠EFH=45°﹣15°=30°,
∴∠AEB=30°,
∵BE=,
∴AB=BEtan30°==1,
∵BE=AM+AB,
AM=BE﹣AB=,
故答案为:3﹣或.
【解析】(1)首先利用等腰直角三角形的性质和正方形的性质得AE=EF,∠ABE=∠EHF=90°,利用全等三角形的判定定理证明△ABE≌△EHF,再利用全等三角形的性质定理可得结论;
(2)同(1)首先证明△ABE≌△EHF,再利用全等三角形的性质定理可得结论;
(3)利用分类讨论的思想,首先由∠AFM=15°,易得∠EFH,由△ABE≌△EHF,根据全等三角形的性质易得∠AEB,利用锐角三角函数易得AB,利用(1)(2)的结论,易得AM.
【考点精析】关于本题考查的全等三角形的性质和平行四边形的性质,需要了解全等三角形的对应边相等; 全等三角形的对应角相等;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能得出正确答案.