题目内容

【题目】在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=

【答案】
【解析】解:如图,过A作AG⊥BD于G, 则SAOD= ×OD×AG,SAOP+SPOD= ×AO×PF+ ×DO×PE= ×DO×(PE+PF),
∵SAOD=SAOP+SPOD
∴PE+PF=AG,
∵AD=12,AB=5,
∴BD= =13,


故答案为:

首先过A作AG⊥BD于G.根据等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,则PE+PF=AG.利用勾股定理求得BD的长,再根据三角形的面积计算公式求得AG的长,即为PE+PF的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网