题目内容
【题目】在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF= .
【答案】
【解析】解:如图,过A作AG⊥BD于G, 则S△AOD= ×OD×AG,S△AOP+S△POD= ×AO×PF+ ×DO×PE= ×DO×(PE+PF),
∵S△AOD=S△AOP+S△POD ,
∴PE+PF=AG,
∵AD=12,AB=5,
∴BD= =13,
∴ ,
∴ .
故答案为: .
首先过A作AG⊥BD于G.根据等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,则PE+PF=AG.利用勾股定理求得BD的长,再根据三角形的面积计算公式求得AG的长,即为PE+PF的长.
练习册系列答案
相关题目
【题目】某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.