题目内容
【题目】某电器超市销售每台进价分别为200元,170元的A、B联众型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
【答案】
(1)解:设A、B两种型号电风扇的销售单价分别为x元、y元,
依题意得: ,
解得: ,
答:A、B两种型号电风扇的销售单价分别为250元、210元
(2)解:设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.
依题意得:200a+170(30﹣a)≤5400,
解得:a≤10.
答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元
(3)解:依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,
解得:a=20,
∵a≤10,
∴在(2)的条件下超市不能实现利润1400元的目标
【解析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.
练习册系列答案
相关题目