题目内容

【题目】如图,海中一小岛有一个观测点A,某天上午观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.B处距离观测点30海里,若该渔船的速度为每小时30海里,问该渔船多长时间到达观测点A的北偏西60°方向上的C处?(计算结果用根号表示,不取近似值)

【答案】该渔船从B处开始航行(1+)小时到达C处.

【解析】

试题分析:过点A作APBC,垂足为P,在RtAPB利用三角函数求的AP和PB的长,则在直角APC中利用三角函数即可求得PC的长,即可求得BC的长,然后根据速度公式求解.

试题解析:过点A作AP⊥BC,垂足为P.

在Rt△APB中,∵∠APB=90°,∠PAB=45°,AB=30

∴BP=AP=AB=30

在Rt△APC中,∵∠APC=90°,∠PAC=30°,

∴tan∠PAC=

∴CP=APtan∠PAC=30.

∵PC+BP=BC=30+30

∴航行时间:(30+30)÷30=1+(小时).

答:该渔船从B处开始航行(1+)小时到达C处.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网