题目内容
【题目】如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于点E,CF∥AE交AD延长线于点F.
(1)求证:四边形AECF是矩形;
(2)连接OE,若AE=12,AD=13,则线段OE的长度是 .
【答案】(1)详见解析;(2)3.
【解析】
(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;
(2)根据已知条件得到得到CE=18,根据勾股定理得到AC=6,于是得到结论.
(1)证明:∵四边形ABCD是菱形,
∴AD∥BC,
∵CF∥AE,
∴四边形AECF是平行四边形.
∵AE⊥BC,
∴∠AEC=90°,
∴平行四边形AECF是矩形;
(2)解:如图,连接OE,
∵AE=12,AD=13,
∴AB=13,
∴BE=5,
∵AB=BC=13,
∴CE=18,
∴AC===6,
∵对角线AC,BD交于点O,
∴AO=CO=3.
∴OE=3,
故答案为:3.
练习册系列答案
相关题目