题目内容
如图,△ABC中∠A=56°,PD垂直平分AB,PE垂直平分BC,则∠BPC的度数为( )
A.124° | B.112° | C.108° | D.118° |
如图,连接PA,∵PD垂直平分AB,PE垂直平分BC,
∴PA=PB,PB=PC,
∴PA=PB=PC,
∴∠PBA=∠PAB,∠PCA=∠PAC,
∵∠A=56°,
∴∠PBA+∠PCA=∠PAB+∠PAC=∠A=56°,
在△ABC中,∠PBC+∠PCB=180°-∠A-(∠PBA+∠PCA)=180°-56°-56°=68°,
在△PBC中,∠BPC=180°-(∠PBC+∠PCB)=180°-68°=112°.
故选B.
∴PA=PB,PB=PC,
∴PA=PB=PC,
∴∠PBA=∠PAB,∠PCA=∠PAC,
∵∠A=56°,
∴∠PBA+∠PCA=∠PAB+∠PAC=∠A=56°,
在△ABC中,∠PBC+∠PCB=180°-∠A-(∠PBA+∠PCA)=180°-56°-56°=68°,
在△PBC中,∠BPC=180°-(∠PBC+∠PCB)=180°-68°=112°.
故选B.
练习册系列答案
相关题目