题目内容
如图,在四边形ABCD中,AD=BC,点P是对角线的中点,点E和点F分别是CD与AB的中点.若∠PEF=20°,则∠EPF的度数是( )
A.110° | B.120° | C.130° | D.140° |
∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,
∴FP,PE分别是△CDB与△DAB的中位线,
∴PF=
BC,PE=
AD,
∵AD=BC,
∴PF=PE,故△EPF是等腰三角形.
∴∠PEF=∠PFE=20°,
∴∠EPF=180°-2∠PEF=140°.
故选:D.
∴FP,PE分别是△CDB与△DAB的中位线,
∴PF=
1 |
2 |
1 |
2 |
∵AD=BC,
∴PF=PE,故△EPF是等腰三角形.
∴∠PEF=∠PFE=20°,
∴∠EPF=180°-2∠PEF=140°.
故选:D.
练习册系列答案
相关题目