题目内容
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A. 36=15+21 B. 25=9+16 C. 13=3+10 D. 49=18+31
【答案】A
【解析】
题目中“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…,根据题目已知条件:从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.可得出最后结果.
这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,
且正方形数是这串数中相邻两数之和,
很容易看到:恰有15+21=36,
故选A.
【题目】列方程式应用题.
天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:
品种 | 每天可加工数量(吨) | 每吨获利(元) |
新鲜柿子 | 不需加工 | 1000元 |
普通柿饼 | 16吨 | 5000元 |
特级霜降柿饼 | 8吨 | 8000元 |
由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:
方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;
方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.
请问:哪种方案获利更多?获利多少元?
【题目】恰逢“植树节”,师梅与博小两所学校决定购进A,B两种树苗进行种植,已知两所学校共花费了390元购进了50棵树苗,其中A树苗10元一棵,B树苗5元一棵.现在要将50棵树苗运往两所学校,其运费如下表所示:
树苗类型 | 师梅(元/棵) | 博小(元/棵) |
A | 8 | 10 |
B | 6 | 5 |
(1)求这50棵树苗中A、B树苗各多少棵?
(2)现师梅需要30棵树苗,博小需要20棵树苗,设师梅需要A树苗为x棵,运往师梅和博小的总运费为y,求y与x的函数解析式.
(3)在(2)的条件下,若运往师梅的运费不超过200元,请你写出使总运费最少的树苗分配方案,并求出最少费用.