题目内容
【题目】若a,b,c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:
①以a2,b2,c2的长为边的三条线段能组成一个三角形;②以 , , 的长为边的三条线段能组成一个三角形;③以a+b,c+h,h的长为边的三条线段能组成直角三角形;④以 , , 的长为边的三条线段能组成直角三角形,正确结论的序号为 .
【答案】②③
【解析】①直角三角形的三条边满足勾股定理a2+b2=c2,因而以a2,b2,c2的长为边的三条线段不能满足两边之和大于第三边,故不能组成一个三角形,故错误;②直角三角形的三边 有a+b>c(a,b,c中c最大),而在 , , 三个数中 最大,如果能组成一个三角形,则有 + > 成立,即( + )2>( )2,即a+b+2 >c(由a+b>c),则不等式成立,从而满足两边之和大于第三边,则以 , , 的长为边的三条线段能组成一个三角形,故正确;③a+b,c+h,h这三个数中 c+h一定最大,(a+b)2+h2=a2+b2+2ab+h2,(c+h)2=c2+h2+2ch,又∵2ab=2ch=4S△ABC,∴(a+b)2+h2=(c+h)2,根据勾股定理的逆定理即以a+b,c+h,h的长为边的三条线段能组成直角三角形,故正确;④假设a= 3,b=4,c=5,则 , , 的长为 , , ,以这三个数的长为边的三条线段不能组成直角三角形,故错误.
【考点精析】解答此题的关键在于理解三角形三边关系的相关知识,掌握三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.