题目内容
【题目】如图,方格纸中每个小正方形的边长都是单位1,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:
(1)将△ABC向右平移3个单位长度再向下平移2个单位长度,画出两次平移后的△A1B1C1;
(2)写出A1、C1的坐标;
(3)将△A1B1C1绕C1逆时针旋转90°,画出旋转后的△A2B2C1 , 求△A1B1C1旋转过程中扫过的面积(结果保留π)
【答案】
(1)解:如图,△A1B1C1为所作
(2)解:A1(0,2),C1(2,0)
(3)解:如图,△A2B2C1为所作;
S△A1B1C=4×3﹣ ×4×1﹣ ×2×2﹣ ×2×3=5,
B1C1= = ,
所以△A1B1C1旋转过程中扫过的面积=S△A1B1C1+S扇形B1C1B2
= +5
= π+5
【解析】(1)、(2)利用点平移的坐标特征,每个点作相同的平移,写出A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1即可;(3)利用网格的特点和旋转的性质,写出点A1、B1的对应点A2、B2的坐标,则描点得到△A2B2C1,再利用面积的和差计算出,然后根据扇形的面积公式,利用△A1B1C1旋转过程中扫过的面积=+S扇形B1C1B2进行计算即可所求结果.
【考点精析】关于本题考查的扇形面积计算公式,需要了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能得出正确答案.
【题目】为积极支持鄂州市创建国家卫生城市工作,某商家计划从厂家采购A,B两种清洁产品共20件,产品的采购单价(元/件)是采购数量(件)的相关信息如下表所示.
采购数量(件) | 2 | 4 | 6 | … |
A产品单价(元) | 1460 | 1420 | 1380 | … |
B产品单价(元) | 1280 | 1260 | 1240 | … |
(1)设B产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;
(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的 ,且B产品采购单价不高于1250元,求该商家共有几种进货方案?
(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大?并求最大利润.