题目内容
【题目】如图,∠ABD、∠ACD的角平分线交于点P,若∠A = 50°,∠D =10°,则∠P的度数为( )
A.15°B.20°C.25°D.30°
【答案】B
【解析】
利用三角形外角的性质,得到∠ACD与∠ABD的关系,然后用角平分线的性质得到角相等的关系,代入计算即可得到答案.
解:延长DC,与AB交于点E.
∵∠ACD是△ACE的外角,∠A=50°,
∴∠ACD=∠A+∠AEC=50°+∠AEC.
∵∠AEC是△BDE的外角,
∴∠AEC=∠ABD+∠D=∠ABD+10°,
∴∠ACD=50°+∠AEC=50°+∠ABD+10°,
整理得∠ACD-∠ABD=60°.
设AC与BP相交于O,则∠AOB=∠POC,
∴∠P+∠ACD=∠A+∠ABD,
即∠P=50°-(∠ACD-∠ABD)=20°.
故选:B.
练习册系列答案
相关题目