题目内容
【题目】已知点,,,,动点以每秒个单位长度的速度沿运动(不与点,重合),设运动时间为秒.
图(1) 图(2)
(1)求经过,,三点的抛物线的函数表达式;
(2)点在(1)中的抛物线上,当为的中点时,若,求点的坐标;
(3)当在上运动时,如图(2),过点作轴,,垂足分别为,,交于点,设矩形与重叠部分的面积为,当为何值时,最大,最大值是多少?
【答案】(1);(2)或;(3)当时,取得最大值为
【解析】
(1)设函数解析式为y=ax2+bx+c,将点A(-2,2),C(0,2),D(2,0)代入解析式即可;
(2)由已知易得点P为AB的垂直平分线与抛物线的交点,点P的纵坐标是1,代入解析式问题可解;
(3)分别用t表示GM、BF、MF表示面积,则问题可解.
解:(1)设抛物线的函数表达式为,则
解这个方程组,得
(2)
,
点为线段的垂直平分线与抛物线的交点
点的纵坐标为
由,
得,
所以点的坐标为或
(3),
,又
所以当时,取得最大值为
【点解】
本题考查二次函数综合;熟练应用待定系数法求函数解析式,掌握三角形全等的性质,直线交点的求法是解题的关键.
练习册系列答案
相关题目