题目内容
【题目】如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.
(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;
(2)将线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;
(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.
【答案】
(1)
解:∵抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),
∴ ,
解得 .
∴抛物线的解析式为y=﹣ x2+ x+2=﹣ (x﹣1)2+2 ,
∴对称轴是x=1,
∵1+(1+1)=3,
∴B点坐标为(3,0),
∴BC的中点坐标为(1.5,1)
(2)
解:∵线段BC先向左平移2个单位长度,再向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,
∴点C1的横坐标为﹣2,
当x=﹣2时,y=﹣ ×(﹣2)2+ ×(﹣2)+2=﹣ ,
∴点C1的坐标为(﹣2,﹣ ),
m=2﹣(﹣ )=5
(3)
解:①若BC为平行四边形的一边,
∵BC的横坐标的差为3,
∵点Q的横坐标为1,
∴P的横坐标为4或﹣2,
∵P在抛物线上,
∴P的纵坐标为﹣3 ,
∴P1(4,﹣3 ),P2(﹣2,﹣3 );
②若BC为平行四边形的对角线,
则BC与PQ互相平分,
∵点Q的横坐标为1,BC的中点坐标为(1.5,1),
∴P点的横坐标为1.5+(1.5﹣1)=2,
∴P的纵坐标为﹣ ×22+ ×2+2=2,
∴P3(2,2).
综上所述,点P的坐标为:P1(4,﹣3 ),P2(﹣2,﹣3 ),P3(2,2)
【解析】(1)把点A(﹣1,0)和点C(0,2)的坐标代入所给抛物线可得a、b的值,进而得到该抛物线的解析式和对称轴,再求出点B的坐标,根据中点坐标公式求出线段BC的中点坐标即可;(2)根据平移的性质可知,点C的对应点C1的横坐标为﹣2,再代入抛物线可求点C1的坐标,进一步得到m的值;(3)B、C为定点,可分BC为平行四边形的一边及对角线两种情况探讨得到点P的坐标.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
【题目】湖州某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共10台,具体情况如下表:
A型 | B型 | |
价格(万元/台) | 15 | 12 |
月污水处理能力(吨/月) | 250 | 200 |
经预算,企业最多支出136万元购买设备,且要求月处理污水能力不低于2150吨.
(1)该企业有哪几种购买方案?
(2)哪种方案更省钱?并说明理由.