题目内容

【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线lOC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].

(理解)

若点D与点A重合,则这个操作过程为FZ[45°,3];

(尝试)

(1)若点D恰为AB的中点(如图2),求θ;

(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上,求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.

【答案】(1)θ =30°;(2)0<a<5时,点E落在四边0ABC的外部.

【解析】

(1)先根据ASA定理得出△BCD≌△AFD,故可得出CD=FD,即点DRt△COF斜边CF的中点,由折叠可知,OD=OC,故OD=OC=CD,△OCD为等边三角形,∠COD=60°,根据等边三角形三线合一的性质可得出结论;(2)根据点E四边形0ABC的边AB上可知AB⊥直线l,根据由折叠可知,OD=OC=3,DE=BC=2.再由θ=45°,AB⊥直线l,得出△ADE为等腰直角三角形,故可得出OA的长,由此可得出结论.

(1)连接CD并延长,交OA延长线于点F.

△BCD△AFD中,

∴△BCD≌△AFD(ASA).

∴CD=FD,即点DRt△COF斜边CF的中点,

∴OD=CF=CD.

又由折叠可知,OD=OC,

∴OD=OC=CD,

∴△OCD为等边三角形,∠COD=60°,

∴θ=∠COD=30°;

(2)∵E四边形OABC的边AB上,

∴AB⊥直线l

由折叠可知,OD=OC=3,DE=BC=2.

∵θ=45°,AB⊥直线l,

∴△ADE为等腰直角三角形,

∴AD=DE=2,

∴OA=OD+AD=3+2=5,

∴a=5;

由图可知,当0<a<5时,点E落在四边形0ABC的外部.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网