题目内容

【题目】如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为 上两点,且∠MEB=∠NFB=60°,则EM+FN=

【答案】
【解析】解:如图,延长ME交⊙O于G, ∵E、F为AB的三等分点,∠MEB=∠NFB=60°,
∴FN=EG,
过点O作OH⊥MG于H,连接MO,
∵⊙O的直径AB=6,
∴OE=OA﹣AE= ×6﹣ ×6=3﹣2=1,
OM= ×6=3,
∵∠MEB=60°,
∴OH=OEsin60°=1× =
在Rt△MOH中,MH= = =
根据垂径定理,MG=2MH=2× =
即EM+FN=
所以答案是:

【考点精析】解答此题的关键在于理解含30度角的直角三角形的相关知识,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网