题目内容
【题目】如图①,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及S四边形ABDC.
(2)在y轴上是否存在一点Q,连接QA,QB,使S△QAB=S四边形ABDC?若存在这样一点,求出点Q的坐标;若不存在,试说明理由.
(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.
【答案】(1)C(0,2),D(4,2),8;(2)Q点的坐标为(0,4)或(0,-4);(3)见解析
【解析】试题分析:(1)依题意知,将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,故C、D两点点y值为2. 所以点C,D的坐标分别为C(0,2),D(4,2) ,
四边形ABDC的面积S四边形ABDC=CO×AB=2×4=8
(2)(2)在y轴上是否存在一点P,使S△PAB=S四边形ABDC.理由如下:
设点P到AB的距离为h,
S△PAB=×AB×h=2h,
由S△PAB=S四边形ABDC,得2h=8,
解得h=4,
∴P(0,4)或(0,-4).
(3)①是正确的结论,过点P作PQ∥CD,
因为AB∥CD,所以PQ∥AB∥CD(平行公理的推论)
∴∠DCP=∠CPQ,∵∠BOP=∠OPQ(两直线平行,内错角相等),
∴∠DCP+∠BOP=∠CPQ +∠OPQ =∠CPO
所以==1.
【题目】已知二次函数,函数与自变量的部分对应值如下表:
… | —4 | —3 | —2 | —1 | 0 | … | |
… | 3 | —2 | —5 | —6 | —5 | … |
则下列判断中正确的是( )
A. 抛物线开口向下 B. 抛物线与轴交于正半轴
C. 方程的正根在1与2之间 D. 当时的函数值比时的函数值大