题目内容

如图,已知矩形ABCD的边长AB=3cm,BC=6cm,某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D沿DA方向以2cm/s的速度向点A匀速运动.
(1)经过多少时间,△AMN的面积等于矩形ABCD面积的
19

(2)是否存在时刻t,使A、M、N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.
分析:(1)关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可,如本题中利用,△AMN的面积等于矩形ABCD面积的
1
9
作为相等关系;
(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在.
解答:解:(1)设经过x秒,△AMN的面积等于矩形ABCD面积的
1
9

由题意得DN=2x,AN=6-2x,AM=x,
∵矩形ABCD中AB=3,BC=6,
∴AD=BC=6,CD=AB=3,
矩形ABCD的面积为:AB•AD=3×6=18,
△AMN的面积=
1
2
AN•AM=
1
2
•x(6-2x)=3x-x2
=
1
9
×18,
可得方程x2-3x+2=0,
解得x1=1,x2=2,
答:经过1秒或2秒,△AMN的面积等于矩形ABCD面积的
1
9


(2)由题意得DN=2t,AN=6-2t,AM=t,
若△NMA∽△ACD,
则有
AD
AN
=
CD
AM
,即
6
6-2x
=
3
x

解得x=1.5,
若△MNA∽△ACD
则有
AD
AM
=
CD
AN
,即
6
x
=
3
6-2x

解得x=2.4,
答:当t=1.5秒或2.4秒时,以A、M、N为顶点的三角形与△ACD相似.
点评:此题考查了相似三角形的判定,正方形的性质和一元二次方程的运用以及解分式方程.要掌握正方形和相似三角形的性质,才会灵活的运用.注意:一般关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网