题目内容
【题目】如图,菱形ABCD的边长为4,∠BAD=60°,点E是AD上一动点(不与A、D重合),点F是CD上一动点,且AE+CF=4,则△DEF面积的最大值为__________
【答案】
【解析】首先过点F作FG⊥AD,交AD的延长线于点G,由菱形ABCD的边长为4,∠BAD=60°,即可求得AD=CD=4,∠FDG=60°,然后设AE=x,即可得S△DEF=DEFG=﹣(x﹣2)2+,然后根据二次函数的性质,即可求得答案.
过点F作FG⊥AD,交AD的延长线于点G.
∵菱形ABCD边长为4,∠BAD=60°,∴AD=CD=4,∠ADB=180°﹣∠BAD=120°,∴∠FDG=180°﹣∠ADB=60°,设AE=x.
∵AE+CF=4,∴CF=4﹣x;
∴DE=AD﹣AE=4﹣x,DF=CD﹣CF=4﹣(4﹣x)=x.在Rt△DFG中,FG=DFsin∠GDF=x,∴S△DEF=DEFG=×(4﹣x)×x=﹣x2+x=﹣(x2﹣4x)=﹣(x﹣2)2+,∴当x=2时,△DEF面积的最大,最大值为.
故答案为:.
练习册系列答案
相关题目
【题目】二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)中的x与y的部分对应值如下表所示,则下列结论中,正确的个数有( )
x | -7 | -6 | -5 | -4 | -3 | -2 |
y | -27 | -13 | -3 | 3 | 5 | 3 |
①当x<-4时,y<3②当x=1时,y的值为-13;③-2是方程ax2+(b-2)x+c-7=0的一个根;④方程ax2+bx+c=6有两个不相等的实数根.
A. 4个 B. 3个 C. 2个 D. 1个