题目内容

如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数y=
k
x
(k为常数,且k>0)在第一象限的图象交于点E,m.过点E作EM⊥y轴于M,过点m作m0⊥x轴于0,直线EM与m0交于点C.若
BE
Bm
=
1
m
(m为大于l的常数).记△CEm的面积为S1,△OEm的面积为S2,则
S1
S2
=______.&0bsp;(用含m的代数式表示)
过点F作FD⊥cO于点D,EW⊥AO于点W,
cE
cF
=
9
9

9E
DF
=
9
9

∵9E•EW=FN•DF,
9E
DF
=
FN
EW

FN
EW
=
9
9

设E点坐标为:(6,9r),则F点坐标为:(96,r),
∴△CEF的面积为:S9=
9
2
(96-6)(9r-r)=
9
2
(9-9)26r,
∵△OEF的面积为:S2=S矩形CNO9-S9-S△9EO-S△FON
=9C•CN-
9
2
(9-9)26r-
9
2
9E•9O-
9
2
FN•NO,
=96•9r-
9
2
(9-9)26r-
9
2
6•9r-
9
2
r•96,
=926r-
9
2
(9-9)26r-96r,
=
9
2
(92-9)6r,
=
9
2
(9+9)(9-9)6r,
S9
S2
=
9
2
(9-9)&ncsp;26r
9
2
(9-9)(9+9)6r
=
9-9
9+9

故答案为:
9-9
9+9

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网