题目内容
【题目】(1)(探索发现)
如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为 .
(2)(类比延伸)
如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.
(3)(拓展应用)
如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN的周长.
【答案】(1)4;(2)MN=NM+DN,理由见解析;(3)6+4
【解析】
(1)求出MN=BM+DN,证明△MNC的周长=BC+CD即可解决问题;
(2)延长CB至E,使BE=DN,连接AE,首先证明△ABE≌△ADN,然后证明△MAN≌△MAE,根据全等三角形的性质可得结论;
(3)如图3,延长BA,CD交于G,解30度直角三角形求出DG和AG,进而得到BC和CD,然后根据(2)中结论计算即可.
解:(1)如图1中,∵△MAN≌△MAG,
∴MN=GM,
∵DN=BG,GM=BG+BM,
∴MN=BM+DN,
∵△CMN的周长为:MN+CM+CN=8,
∴BM+CM+CN+DN=8,
∴BC+CD=8,
∴BC=CD=4,
故答案为4;
(2)结论:MN=NM+DN.
理由:如图2中,延长CB至E,使BE=DN,连接AE,
∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,
∴∠D=∠ABE,
在△ABE和△ADN中,,
∴△ABE≌△ADN(SAS),
∴AN=AE,∠DAN=∠BAE,
∵∠BAD=2∠MAN,
∴∠DAN+∠BAM=∠MAN,
∴∠MAN=∠EAM,
在△MAN和△MAE中,,
∴△MAN≌△MAE(SAS),
∴MN=EM=BE+BM=BM+DN;
(3)如图3,延长BA,CD交于G,
∵∠BAM=60°,∠MAD=90°,
∴∠BAD=150°,
∴∠GAD=30°,
∵AD=2,
∴DG=1,AG=,
∵∠DAN=15°,
∴∠GAN=45°,
∴AG=GN=,
∴BG=2+,
∴BC=2BG=4+2,CG=BG=2+3,
∴CD=CG﹣DG=2+2,
由(2)得,MN=BM+DN,
∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.