题目内容
【题目】在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|也可理解为5、0在数轴上对应的两点之间的距离.类似的,|5-3|表示5与3之差的绝对值,也可理解为5与3两数在数轴上所对应的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示数x的点之间的距离,一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|.
请根据绝对值的意义并结合数轴解答下列问题:
(1)数轴上表示2和3的两点之间的距离是 ;数轴上表示数a的点与表示﹣2的点之间的距离表示为 ;
(2)数轴上点P表示的数是2,P、Q两点的距离为3,则点Q表示的数是 ;
(3)数轴上有一个点表示数a,则|a+1|+|a-3|+|a+8|的最小值为 ;
(4)a、b、c、d在数轴上的位置如下图所示,若|a-d|=12,|b-d|=7,|a-c|=9,则|b-c|等于 .
【答案】(1)1,|a+2|;(2)5或-1;(3)11;(4)4.
【解析】
在数轴上表示两点距离用数轴右边的点减去左边的点,或者不知大小时加上绝对值,几个绝对值的和,则需要分类讨论,去掉绝对值后的值取决于绝对值里式子的符号,负数的
解:(1)2和3之间的距离为 3-2=1,a与-2之间的距离为|a+2|;
(2)在数轴上到2的距离为3的点有两个, -1或5;
(3)需要分类讨论
当a时,|a+1|+|a-3|+|a+8|=3a+615
当时,11|a+1|+|a-3|+|a+8|15
当时,11|a+1|+|a-3|+|a+8|18
当时, |a+1|+|a-3|+|a+8|18
综上,最小值为11;
(4) 由图可得,所以
|a-d|=d-a=12,①
|b-d|=d-b=7,②
|a-c|=c-a=9,③
由① - ②可得,b-a=5,④
由③-④可得,c-b=4,
且|b-c|=c-b,所以|b-c|=4;