题目内容
【题目】今年水果大丰收,A,B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.
(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;
(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.
【答案】(1)W=35x+11200,x的取值范围是80≤x≤380;(2)从A基地运往甲销售点的水果200件,运往乙销售点的水果180件,从B基地运往甲销售点的水果200件,运往乙销售点的水果120件.
【解析】
试题(1)用x表示出从A基地运往乙销售点的水果件数,从B基地运往甲、乙两个销售点的水果件数,然后根据运费=单价×数量列式整理即可得解,再根据运输水果的数量不小于0列出不等式求解得到x的取值范围;(2)根据一次函数的增减性确定出运费最低时的运输方案,然后求解即可.
试题解析:
(1)依题意,列表得
A(380) | B(320) | |
甲(400) | x | 400-x |
乙(300) | 380-x | 320-(400-x)=x-80 |
∴W=40x+20×(380-x)+15×(400-x)+30×(x-80)=35x+11200
又解得80≤x≤380
(2) 依题意得解得,∴x=200,201,202
因w=35x+10,k=35,w随x的增大而增大,所以x=200时,运费w最低,最低运费为81200元。
此时运输方案如下:
A | B | |
甲 | 200 | 200 |
乙 | 180 | 120 |
【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的重量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准重量的差值(单位:g) | ﹣5 | ﹣2 | 0 | 1 | 3 | 6 |
袋数 | 1 | 4 | 3 | 4 | 5 | 3 |
(1)计算这批样品的平均重量,判断它比标准重量重还是轻多少?
(2)若标准重量为450克,则这批样品的总重量是多少?
(3)若这种食品的合格标准为450±5克,则这批样品的合格率为 (直接填写答案)