题目内容
【题目】在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,求两次摸出的小球的标号之和大于4的概率?
【答案】解:画树状图得:
.
∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,
∴两次摸出的小球的标号之和大于4的概率是: .
【解析】先画出树状图,得出所有等可能的结果和两次摸出的小球的标号之和大于4的情况,再由概率公式计算.
【考点精析】解答此题的关键在于理解列表法与树状图法的相关知识,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率,以及对概率公式的理解,了解一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.
练习册系列答案
相关题目
【题目】甲、乙两位同学本学期11次考试的测试成绩如下:
甲 | 98 | 100 | 100 | 90 | 96 | 91 | 89 | 99 | 100 | 100 | 93 |
乙 | 98 | 99 | 96 | 94 | 95 | 92 | 92 | 98 | 96 | 99 | 97 |
(1) 他们的平均成绩和方差各是多少?
(2) 分析他们的成绩各有什么特点?
(3) 现要从两人中选一人参加比赛,历届比赛成绩表明,平时成绩达到98分以上才可能进入决赛,你认为应选谁参加这次比赛?为什么?