题目内容

如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为
3
的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.
(1)画出旋转后的Rt△ADE;
(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;
(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.
(1)如图Rt△ADE就是要画的图形

(2)连接MQ,过M点作MF⊥DE,垂足为F,由Rt△ABC可知,NE=1,
在Rt△MFQ中,解得FQ=
2
,故弦PQ的长度2
2


(3)AD与⊙M相切.
证明:过点M作MH⊥AD于H,连接MN,MA,则MN⊥AE,且MN=
3

在Rt△AMN中,tan∠MAN=
MN
AN
=
3
3

∴∠MAN=30°,
∵∠DAE=∠BAC=60°,
∴∠MAD=30°,
∴∠MAN=∠MAD=30°,
∴MH=MN,
∴AD与⊙M相切.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网