题目内容
25°
25°
.分析:连接OB,根据切线的性质定理以及四边形的内角和定理得到∠AOB=180°-∠P=130°,再根据等边对等角以及三角形的内角和定理求得∠BAC的度数.
解答:解:连接OB,
∵PA、PB是⊙O的切线,A、B为切点,
∴∠PAO=∠PBO=90°,
∴∠AOB=360°-∠P-∠PAO-∠PBO=130°,
∵OA=OB,
∴∠BAC=25°.
∵PA、PB是⊙O的切线,A、B为切点,
∴∠PAO=∠PBO=90°,
∴∠AOB=360°-∠P-∠PAO-∠PBO=130°,
∵OA=OB,
∴∠BAC=25°.
点评:此题综合运用了切线的性质定理、四边形的内角和定理、等边对等角以及三角形的内角和定理的应用,主要考查学生的推理和计算能力,注意:圆的切线垂直于过切点的半径.
练习册系列答案
相关题目