题目内容
【题目】如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.
(1)当运动时间t为多少秒时,PQ∥CD.
(2)当运动时间t为多少秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
【答案】(1)当运动时间t为1.5秒时,PQ∥CD;(2)当运动时间t为1或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
【解析】
根据题意得:AP=t,CQ=3t,(1)根据平行四边形性质得6-t=3t;(2)①当Q运动到E和B之间,设运动时间为t,则得:3t-8=6-t;②当Q运动到E和C之间,设运动时间为t,则得:8-3t=6-t.
根据题意得:AP=t,CQ=3t,
∵AD=6,BC=16,
∴PD=AD-AP=6-t;
(1)∵AD∥BC,
∴当PD=CQ时,四边形CDPQ是平行四边形,此时PQ∥CD,
∴6-t=3t,
解得:t=1.5;
∴当运动时间t为1.5秒时,PQ∥CD.
(2)∵E是BC的中点,
∴BE=CE=BC=8,
①当Q运动到E和B之间,设运动时间为t,则得:
3t-8=6-t,
解得:t=3.5;
②当Q运动到E和C之间,设运动时间为t,则得:
8-3t=6-t,
解得:t=1,
∴当运动时间t为1或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.
练习册系列答案
相关题目