题目内容

【题目】如图,在ABC中,ACB=90°,点D,E分别在AC,BC上,且CDE=B,将CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为

【答案】

【解析】

试题分析:由折叠可得,DCE=DFE=90°,D,C,E,F四点共圆,∴∠CDE=CFE=B,又CE=FE,∴∠CFE=FCE,∴∠B=FCE,CF=BF,同理可得,CF=AF,AF=BF,即F是AB的中点,RtABC中,CF=AB=5,由D,C,E,F四点共圆,可得DFC=DEC,由CDE=B,可得DEC=A,∴∠DFC=A,又∵∠DCF=FCA,∴△CDF∽△CFA,CF2=CD×CA,即52=CD×8,CD=,故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网