题目内容
【题目】如图,C为⊙O上的一点,P为直径AB延长线上的一点,BH⊥CP于H交⊙O于D,∠PBH=2∠PAC.
(1)求证:PC是⊙O的切线;
(2)若sin∠P= ,求 的值.
【答案】
(1)解:证明:连接OC,
∵OA=OC,
∴∠PAC=∠OCA,
∴∠COP=∠PAC+∠OCA=2∠PAC,
∵∠PBH=2∠PAC,
∴∠COP=∠OBH,
∴OC∥BH,
∵BH⊥CP,
∴OC⊥CP,
∴PC是⊙O的切线;
(2)解:设⊙O的半径为2a,
在Rt△OCP中,sin∠P= ,OC⊥CP,
∴OP=3a,
∴PB=OP﹣OB=a,
作OG⊥DH,
则BG= BD,△OBG∽△PBH,
∴ ,
∴ .
【解析】(1)连接OC,根据等腰三角形的性质得到∠PAC=∠OCA,推出∠COP=∠OBH,得到OC∥BH,于是得到结论;(2)设⊙O的半径为2a,解直角三角形得到OP=3a,PB=OP﹣OB=a,作OG⊥DH,根据相似三角形的性质即可得到结论.
【考点精析】利用切线的判定定理和相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
练习册系列答案
相关题目