题目内容

【题目】在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论: ①AM=CN;
②∠AME=∠BNE;
③BN﹣AM=2;
④SEMN=
上述结论中正确的个数是(

A.1
B.2
C.3
D.4

【答案】C
【解析】解:①如图,
在矩形ABCD中,AD=2AB,E是AD的中点,
作EF⊥BC于点F,则有AB=AE=EF=FC,
∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,
∴∠AEM=∠FEN,
在Rt△AME和Rt△FNE中,

∴Rt△AME≌Rt△FNE,
∴AM=FN,
∴MB=CN.
∵AM不一定等于CN,
∴①错误,
②由①有Rt△AME≌Rt△FNE,
∴∠AME=∠BNE,
∴②正确,
③由①得,BM=CN,
∵AD=2AB=4,
∴BC=4,AB=2
∴BN﹣AM=BC﹣CN﹣AM=BC﹣BM﹣AM=BC﹣(BM+AM)=BC﹣AB=4﹣2=2,
∴③正确,
④方法一:如图,

由①得,CN=CF﹣FN=2﹣AM,AE= AD=2,AM=FN
∵tanα=
∴AM=AEtanα
∵cosα= =
∴cos2α=
=1+ =1+( 2=1+tan2α,
=2(1+tan2α)
∴SEMN=S四边形ABNE﹣SAME﹣SMBN
= (AE+BN)×AB﹣ AE×AM﹣ BN×BM
= (AE+BC﹣CN)×2﹣ AE×AM﹣ (BC﹣CN)×CN
= (AE+BC﹣CF+FN)×2﹣ AE×AM﹣ (BC﹣2+AM)(2﹣AM)
=AE+BC﹣CF+AM﹣ AE×AM﹣ (2+AM)(2﹣AM)
=AE+AM﹣ AE×AM+ AM2
=AE+AEtanα﹣ AE2tanα+ AE2tan2α
=2+2tanα﹣2tanα+2tan2α
=2(1+tan2α)
=
方法二,∵E是AD的中点,
∴AE= AD=2,
在Rt△AEM,cosα=
∴EM= =
由(1)知,Rt△AME≌Rt△FNE,
∴EM=EN,∠AEM=∠FEN,
∵∠AEF=90°,
∴∠MEN=90°,
∴△MEN是等腰直角三角形,
∴SMEN= EM2=
∴④正确.
故选C.
【考点精析】掌握旋转的性质是解答本题的根本,需要知道①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网