题目内容
【题目】某地区2015年投入教育经费2900万元,2017年投入教育经费3509万元.
(1)求2015年至2017年该地区投入教育经费的年平均增长率;
(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的情况,该地区到2019年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费是否能达到4250万元?请说明理由.
【答案】(1)10%(2)不能.
【解析】
(1)增长前量(1+增长率)=增长后量,2015年2900万元为增长前量,2017年3509万元为增长后量,即可列出方程求解;
(2)根据(1)中求得的增长率求出2019年该地区投入的教育经费.
(1)设增长率为x,由题意得
,
解得(不合题意,舍去)
答:2015年至2017年该地区投入教育经费的年平均增长率为10%.
(2)2019年该地区投入的教育经费是(万元),
4245.89
答:按(1)中教育经费投入的增长率,到2019年该地区投入的教育经费不能达到4250万元.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:
(1)函数的自变量x的取值范围是 ;
(2)下表是x与y的几组对应值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如图,在平面直角坐标系中,已描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,).结合函数的图象,写出该函数的其它性质(写两条即可).