题目内容
【题目】如图,直线y=2x+4与x轴、y轴分别交于点A、B,以OB为底边在y轴右侧作等腰△OBC,将△OBC沿y轴折叠,使点C恰好落在直线AB上,则点C的坐标为( )
A.(1,2)B.(4,2)C.(3,2)D.(﹣1,2)
【答案】A
【解析】
由直线y=2x+4与y轴交于点B,可得OB=4,再根据△OBC是以OB为底的等腰三角形,可得点C的纵坐标为2,依据△OBC沿y轴折叠,使点C恰好落在直线AB上,即可得到点C的横坐标为1.
∵直线y=2x+4与y轴交于点B,
∴B(0,4),
∴OB=4,
又∵△OBC是以OB为底的等腰三角形,
∴点C的纵坐标为2,
∵△OBC沿y轴折叠,使点C恰好落在直线AB上,
∴当y=2时,2=2x+4,
解得x=-1,
∴点C的横坐标为1,
∴点C的坐标为(1,2),
故选A.
练习册系列答案
相关题目