题目内容

精英家教网在一次“寻宝”游戏中,寻宝人找到了如图所示两个标志点A(2,1),B(4,-1),这两个标志点到“宝藏”点的距离都是
10
,则“宝藏”点的坐标是(  )
A、(5,2)
B、(-2,1)
C、(5,2)或(1,-2)
D、(2,-1)或(-2,1)
分析:根据两点间的距离公式列方程组求.
解答:解:设宝藏的坐标点为C(x,y),根据坐标系中两点间距离公式可知,AC=BC,
(x-2)2+(y-1)2
=
(x-4)2+(y+1)2

两边平方得(x-2)2+(y-1)2=(x-4)2+(y+1)2
化简得x-y=3;
又因为标志点到“宝藏”点的距离是
10
,所以(x-2)2+(y-1)2=10;
把x=3+y代入方程得,y=±2,即x=5或1,
所以“宝藏”C点的坐标是(5,2)或(1,-2).
故选C.
点评:本题主要考查了平面直角坐标系中的两点间距离公式的实际运用,此公式要去掌握,在解决此类问题时用此作为相等关系列方程是一个很重要的方法.若有两点A(x1,y1),B(x2,y2),则两点间距离公式:AB=
(x1-x2)2+(y1-y2)2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网