题目内容
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为(3,0),(0,1).
(1)求抛物线的解析式;
(2)猜想△EDB的形状并加以证明.
【答案】(1)y=—x2+3x;(2)△EDB为等腰直角三角形,见解析.
【解析】
(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;
(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;
(1)在矩形OABC中,OA=4,OC=3,
∴A(4,0),C(0,3),
∵抛物线经过O、A两点,顶点在BC边上,
∴抛物线顶点坐标为(2,3),
∴可设抛物线解析式为y=a(x﹣2)2+3,
把A点坐标代入可得0=a(4﹣2)2+3,解得a=-,
∴抛物线解析式为y=—(x﹣2)2+3,即y=—
x2+3x;
(2)△EDB为等腰直角三角形.
证明:
由(1)可知B(4,3),且D(3,0),E(0,1),
∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,
∴DE2+BD2=BE2,且DE=BD,
∴△EDB为等腰直角三角形.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】从北京市环保局证实,为满足2022年冬奥会对环境质量的要求,北京延庆正在对其周边的环境污染进行综合治理,率先在部分村镇进行“煤改电”改造.在治理的过程中,环保部门随机选取了永宁镇和千家店镇进行空气质量监测.过程如下,请补充完整.
收集数据:
从2016年12月初开始,连续一年对两镇的空气质量进行监测(将30天的空气污染指数(简称:API)的平均值作为每个月的空气污染指数,12个月的空气污染指数如下:
千家店镇:120 115 100 100 95 85 80 70 50 50 50 45
永宁 镇:110 90 105 80 90 85 90 60 90 45 70 60
整理、描述数据:
空气质量
按如表整理、描述这两镇空气污染指数的数据:
空气质量为优 | 空气质量为良 | 空气质量为轻微污染 | |
千家店镇 | 4 | 6 | 2 |
永宁 镇 |
|
|
|
(说明:空气污染指数≤50时,空气质量为优;50<空气污染指数≤100时,空气质量为良;100<空气污染指数≤150时,空气质量为轻微污染.)
分析数据:
两镇的空气污染指数的平均数、中位数、众数如下表所示;
城镇 | 平均数 | 中位数 | 众数 |
千家店 | 80 |
| 50 |
永 宁 | 81.3 | 87.5 |
|
请将以上两个表格补充完整;
得出结论:可以推断出 镇这一年中环境状况比较好,理由为 .(至少从两个不同的角度说明推断的合理性)