题目内容
【题目】如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),直线BC经过点B(﹣8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转角度α得到四边形OA′B′C′,此时边OA′与边BC交于点P,边B′C′与BC的延长线交于点Q,连接AP.
(1)四边形OABC的形状是 .
(2)在旋转过程中,当∠PAO=∠POA,求P点坐标.
(3)在旋转过程中,当P为线段BQ中点时,连接OQ,求△OPQ的面积.
【答案】(1)矩形;(2)P(﹣4,6);(3)
【解析】
试题分析:(1)利用A,B,C点坐标得出∠COA=∠OAB=∠B=90°,进而得出答案;
(2)利用∠PAO=∠POA得出PA=PO,进而得出AE=EO=4,即可得出P点坐标;
(3)首先得出Rt△OCQ≌Rt△OC'Q(HL),进而利用平行线的性质求出∠POQ=∠PQO,即可得出BP=PO,再利用勾股定理得出PQ的长,进而求出△OPQ的面积.
解:(1)∵点A的坐标为(﹣8,0),点B(﹣8,6),C(0,6),
∴∠COA=∠OAB=∠B=90°,
∴四边形OABC是矩形.
故答案为:矩形;
(2)如图1,过点P作PE⊥AO于点E,
∵∠PAO=∠POA,
∴PA=PO,
∵PE⊥AO,
∴AE=EO=4,
∴P(﹣4,6);
(3)如图2,在Rt△OCQ和Rt△OC'Q中,
,
∴Rt△OCQ≌Rt△OC'Q(HL),
∴∠OQC=∠OQC',
又∵OP∥C'Q,
∵∠POQ=∠OQC',
∴∠POQ=∠PQO,
∴PO=PQ,
∵BP=QP,
∴BP=OP=x,
在Rt△OPC中,x2=(8﹣x)2+62,
解得:x=.
故S△OPQ=×CO×PQ=×6×=.
练习册系列答案
相关题目