题目内容
【题目】如图,平行四边形ABCD的对角线AC、BD交于点O,分别过点C、D作CF∥BD,DF∥AC,连接BF交AC于点E.
(1)求证:△FCE≌△BOE;
(2)当△ADC满足什么条件时,四边形OCFD为菱形?请说明理由.
【答案】(1)见解析;(2)当△ADC满足∠ADC=90°时,四边形OCFD为菱形;理由见解析.
【解析】
(1)证明四边形OCFD是平行四边形,得出OD=CF,证出OB=CF,即可得出△FCE≌△BOE(AAS);
(2)证出四边形ABCD是矩形,由矩形的性质得出OC=OD,即可得出四边形OCFD为菱形.
(1)证明:∵CF∥BD,DF∥AC,
∴四边形OCFD是平行四边形,∠OBE=∠CFE,
∴OD=CF,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴OB=CF,在
△FCE和△BOE中,,
∴△FCE≌△BOE(AAS);
(2)解:当△ADC满足∠ADC=90°时,四边形OCFD为菱形;理由如下:
∵∠ADC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,
∴OC=OD,
∴四边形OCFD为菱形.
练习册系列答案
相关题目