题目内容
【题目】如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数表达式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;
(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.
①写出点M′的坐标;
②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2 , 当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).
【答案】
(1)
解:令x=0代入y=﹣3x+3,
∴y=3,
∴B(0,3),
把B(0,3)代入y=ax2﹣2ax+a+4,
∴3=a+4,
∴a=﹣1,
∴二次函数解析式为:y=﹣x2+2x+3
(2)
解:令y=0代入y=﹣x2+2x+3,
∴0=﹣x2+2x+3,
∴x=﹣1或3,
∴抛物线与x轴的交点横坐标为﹣1和3,
∵M在抛物线上,且在第一象限内,
∴0<m<3,
过点M作ME⊥y轴于点E,交AB于点D,
由题意知:M的坐标为(m,﹣m2+2m+3),
∴D的纵坐标为:﹣m2+2m+3,
∴把y=﹣m2+2m+3代入y=﹣3x+3,
∴x= ,
∴D的坐标为( ,﹣m2+2m+3),
∴DM=m﹣ = ,
∴S= DMBE+ DMOE
= DM(BE+OE)
= DMOB
= × ×3
=
= (m﹣ )2+
∵0<m<3,
∴当m= 时,
S有最大值,最大值为 ;
(3)
解:①由(2)可知:M′的坐标为( , );
②
过点M′作直线l1∥l′,过点B作BF⊥l1于点F,
根据题意知:d1+d2=BF,
此时只要求出BF的最大值即可,
∵∠BFM′=90°,
∴点F在以BM′为直径的圆上,
设直线AM′与该圆相交于点H,
∵点C在线段BM′上,
∴F在优弧 上,
∴当F与M′重合时,
BF可取得最大值,
此时BM′⊥l1,
∵A(1,0),B(0,3),M′( , ),
∴由勾股定理可求得:AB= ,M′B= ,M′A= ,
过点M′作M′G⊥AB于点G,
设BG=x,
∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,
∴ ﹣( ﹣x)2= ﹣x2,
∴x= ,
cos∠M′BG= = ,
∵l1∥l′,
∴∠BCA=90°,
∠BAC=45°
【解析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出a的值;(2)过点M作ME⊥y轴于点E,交AB于点D,所以△ABM的面积为 DMOB,设M的坐标为(m,﹣m2+2m+3),用含m的式子表示DM,然后求出S与m的函数关系式,即可求出S的最大值,其中m的取值范围是0<m<3;(3)①由(2)可知m= ,代入二次函数解析式即可求出纵坐标的值;
②过点M′作直线l1∥l′,过点B作BF⊥l1于点F,所以d1+d2=BF,所以求出BF的最小值即可,由题意可知,点F在以BM′为直径的圆上,所以当点F与M′重合时,BF可取得最大值.本题考查二次函数的综合问题,涉及待定系数求二次函数解析式,求三角形面积,圆的相关性质等知识,内容较为综合,学生需要认真分析题目,化动为静去解决问题.