题目内容
【题目】如图所示的抛物线对称轴是直线x=1,与x轴有两个交点,与y轴交点坐标是(0,3),把它向下平移2个单位后,得到新的抛物线解析式是 y=ax2+bx+c,以下四个结论:
①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>10中,判断正确的有( )
A.②③④
B.①②③
C.②③
D.①④
【答案】A
【解析】解:根据题意平移后的抛物线的对称轴x=﹣ =1,c=3﹣2=1,
由图象可知,平移后的抛物线与x轴有两个交点,
∴b2﹣4ac>0,故①错误;
∵抛物线开口向上,∴a>0,b=﹣2a<0,
∴abc<0,故②正确;
∵平移后抛物线与y轴的交点为(0,1)对称轴x=1,
∴点(2,1)点(0,1)的对称点,
∴当x=2时,y=1,
∴4a+2b+c=1,故③正确;
由图象可知,当x=﹣1时,y>0,
∴a﹣b+c>0,故④正确.
故选A.
【考点精析】本题主要考查了二次函数图象以及系数a、b、c的关系和二次函数图象的平移的相关知识点,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c);平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减才能正确解答此题.
练习册系列答案
相关题目